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Abstract

This paper describes some recent advances and contributions to our understanding of
economic forecasting. The framework we develop helps explain the findings of forecasting
competitions and the prevalence of forecast failure. It constitutes a general theoretical
background against which recent results can be judged. We compare this framework to a
previous formulation, which was silent on the very issues of most concern to the forecaster.
We describe a number of aspects which it illuminates, and draw out the implications for
model selection. Finally, we discuss the areas where research remains needed to clarify
empirical findings which lack theoretical explanations.
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A forecast is any statement about the future, so economic forecasting is a vast
subject. To be really successful at forecasting, one requires a ‘crystal ball’ that
reveals the future: unfortunately, these appear to be unavailable—as theWashington
Post headlined in relation to the probability of a recession in the USA, ‘Never a
crystal ball when you need one’. Consequently, we focus on ‘extrapolating’ from2
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present information using systematic forecasting rules. While many such extrapola-
tive methods do at least exist, they face the difficulty that the future is uncertain—
for two reasons. The first is uncertainty where we understand the probabilities
involved, so can incorporate these in(say) measures of forecast uncertainty. The
second is uncertainties we do not currently understand, and is the more serious
problem, particularly in economies where non-stationary behaviour is the norm—as
Clements and Hendry(1999a) quote:

Because of the things we don’t know we don’t know, the future is largely unpredictable. Singer
(1997, p. 39).

Empirical models can take into account the effects of earlier events—even though
these were unanticipated at the time—and so ‘explain’ the past quite well. However,
new unpredictable events will occur in the future, so the future will always appear
more uncertain than the past. Any operational theory of economic forecasting must
allow for such contingencies, where any of the data moments(especially levels and
variability) of I(0) transformations of economic variables might alter because of
changes in technology, legislation, politics, weather and society. Stock and Watson
(1996) document the pervasiveness of structural change in macroeconomic time-
series.

Regular persistent changes are now modelled by stochastic trends, so unit roots
are endemic in econometric and forecasting models. Structural breaks—defined as
sudden large changes, invariably unanticipated—are a major source of forecast
failure, namely a significant deterioration in forecast performance relative to the
anticipated outcome, usually based on the historical performance of a model. To
date, no generic approaches to modelling such breaks have evolved, although
considerable effort is being devoted to non-linear models, many of which primarily
select rare events. Thus, in practice, economic forecasts end up being a mixture of
science—based on econometric systems that embody consolidated economic knowl-
edge and have been carefully evaluated—and art, namely judgements about pertur-
bations from recent unexpected events.

The theme of our paper is that recommendations about model types for forecasting,
and associated methods, need to be based on a general theory of economic
forecasting that has excess empirical content. First, Section 2 sketches an earlier
theoretical background which can loosely be equated to the ‘textbook’ treatment.
Unfortunately, despite its mathematical elegance and the simplicity of its prescrip-
tions, the evidence against it providing a useful theory for economic forecasting
cannot be ignored: see Section 2.1. Section 3 then proposes a more viable framework
based on Clements and Hendry(1999a) and Section 3.1 outlines the underlying
forecast-error taxonomy. Proposals based on inducing ‘principles’ from the experi-
ence of forecast successes and failures are discussed in Section 4. Ten areas where
the new theoretical framework appears to account for the evidence are investigated
in Section 5: the basis for their selection is that we do not anticipate major changes
in those areas. The implications of that theory for model selection are then drawn
in Section 6. Section 7 considers 10 areas where further research remains a high
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priority, in many instances, already ongoing. Finally, Section 8 provides some
concluding remarks. The results reported below draw on a number of published(or
forthcoming) papers and books. However, the paper does not claim to be complete
in any sense, partly because the subject is now advancing rapidly on many fronts.

2. Background

Historically, the theory of economic forecasting has relied on two key assumptions
(see e.g. Klein, 1971):

1. the model is a good representation of the economy; and
2. the structure of the economy will remain relatively unchanged.

Given these assumptions, several important theorems can be proved, each with
many testable implications: see Clements and Hendry(1998) for details and proofs.
We refer to this as ‘optimality theory’ following Makridakis and Hibon(2000).

First, forecasts from such models will closely approximate the conditional
expectation of the data, so the ‘best’ model generally produces the best forecasts.
This entails that an in-sample congruent encompassing model will dominate in
forecasting. Moreover, for example, the only judgements that should improve
forecasts are those based on advance warnings of events to come(such as notice of
future tax changes or strikes). Furthermore, it should not pay to pool forecasts
across several models—indeed, pooling refutes encompassing—and adding biased
forecasts or those from a badly-fitting model should merely serve to worsen(say)
mean-square forecast errors(MSFEs).

Second, forecast accuracy should decline as the forecast horizon increases because
more innovation errors accrue and predictability falls. Forecast intervals calculated
from in-sample estimates reflect this property.3

Third, in-sample based forecast intervals should be a good guide to the likely
variations in the forecast errors. Monte Carlo simulation evidence from studies
embodying the two assumptions corroborate this finding(see inter alia, Calzolari,
1981 and Chong and Hendry, 1986).

Given such a strong foundation, one might anticipate a successful history of
economic forecasting. The facts are otherwise.

2.1. The failure of ‘optimality theory’

Unfortunately, empirical experience in economic forecasting has highlighted the
poverty of these two assumptions. Such an outcome should not be a surprise: all
econometric models are mis-specified, and all economies have been subject to
important unanticipated shifts: for example, Barrell(2001) discusses six examples
of endemic structural change since the 1990s. Also, Clements and Hendry(2001c)
seek to ascertain the historical prevalence of forecast failure in output forecasts for
the UK, and any association of such poor forecasts with major ‘economic events’.

Such forecast intervals from dynamic models need not be monotonically non-decreasing in the3

horizon, but this is a technical issue(see Chong and Hendry, 1986).
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Since the future is rarely like the past in economics, forecast failure has been all
too common.

There is a vast literature evaluating the forecast performance of models. Early
forecast-evaluation exercises compared econometric model forecasts to those of
naive time-series models such as ‘no-change’ predictors: see e.g. Theil(1966),
Mincer and Zarnowitz(1969), Dhrymes et al.(1972), and Cooper and Nelson
(1975) with findings that were not favourable to the large econometric systems.
More recently, Wallis(1989) and McNees(1990) survey UK and US evidence,
respectively, although the former concludes that ‘published model forecasts generally
outperform their time series competitors’(p. 46). In the assessment of the track4

record of the UK Treasury by a long-serving Chief Economic Advisor, Burns(1986)
saw little improvement in forecast accuracy over time, despite substantive improve-
ments in the underlying models.

The major empirical forecasting competitions, such as Makridakis et al.(1982)
reviewed by Fildes and Makridakis(1995), produce results across many models on
numerous time series that are inconsistent with the implications of the two
assumptions above: see Clements and Hendry(1999a) and Section 5.7. Although
which model does best in a forecasting competition depends on how the forecasts
are evaluated and what horizons and samples are selected, ‘simple’ extrapolative
methods tend to outperform econometric systems, and pooling forecasts often pays.

Even within the present generation of equilibrium-correction economic forecasting
models, there is no evidence that the ‘best’ in-sample model is the best at forecasting,
as shown by the results in Eitrheim et al.(1999). Those authors find that at short
horizons (up to four quarters), badly-fitting extrapolative devices nevertheless
outperform the Norges Bank econometric system, although the Norges Bank model
‘wins’ over longer horizons(12 quarters ahead) because the greater forecast-error
variances of the simpler devices offset their smaller biases.

The final conflicting evidence is that ‘judgement’ has value added in economic
forecasting(see Turner, 1990 and Wallis and Whitley, 1991). One might surmise
that forecasters have ‘fore-knowledge’ which contributes to that finding, but the
wide-spread use of intercept corrections which ‘set the model back on track’(i.e.
ensure a perfect fit at the forecast origin) suggests that existing estimated macro-
economic models do not provide a good approximation to the conditional expectation
over the forecast horizon. The next section explores the consequences of abandoning
these two assumptions, and instead allowing that models are mis-specified for the
data generation process(DGP), and that the DGP itself changes.

3. A more viable framework

The forecasting theory in Clements and Hendry(1999a) makes two matching,
but far less stringent, assumptions:

1. models are simplified representations which are incorrect in many ways; and
2. economies both evolve and suddenly shift.

Notice that ‘published forecasts’ often embody judgmental adjustments.4
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In this more realistic setting, none of the theorems discussed in Section 2 hold.
Section 3.1 lists the set of potential sources of forecast error and their likely
consequences, but concludes that shifts in deterministic terms(intercepts and linear
trends) are the major source of forecast failure. When such shifts occur, the best
model in-sample need not produce the best forecasts. Furthermore, pooling of
forecasts may pay dividends by averaging offsetting biases. Also, longer-term
forecasts may be more accurate than short-term ones. Judgement—or at least one
class of intercept corrections—can improve forecasting performance. Finally, calcu-
lated forecast intervals can be seriously misleading about actual forecast
uncertainty. Thus, almost the opposite implications hold compared to the previous5

theory—and these now do match empirical findings. In particular, since differencing
lowers the degree of a polynomial in time by one degree, intercepts and linear
trends are eliminated by double differencing, so such devices might be expected to
perform well in forecasting despite fitting very badly in-sample.

The following simple example illustrates the virtues of differencing. Suppose the6

mean of a process changes attst in an otherwise stationary model, where´ mayt

be serially correlated:
t ty sm 1y1 qm 1 q´ ts1,...T (1)Ž .t 1 T 2 T t

where the indicator variable s1 for t g wt, tqjx and is zero otherwise. If thet1tqj

change at timet is not modelled, then in terms of first differences:
t t tDy sm D 1y1 qm D1 qD´ s m ym 1 qD´ (2)Ž . Ž .t 1 T 2 T t 2 1 t t

and the first term will add to the residual, so over the sample as a whole, there will
not be a redundant common factor of(lyL). The residuals are likely to be
negatively autocorrelated in the absence of any dynamic modelling, offset by any
original positive autocorrelation in the{ ´ } . Therefore, the expected level ofyt t

changes fromm to m at timet, but the break produces only one non-zero blip of1 2

at t in the first difference. It is easy to see that forecasts based on them ymŽ .2 1

first difference specification will be robust to shifts. Write theh-step ahead forecast

of the level of{ y} from periodt as , i.e. the forecast of theˆˆ ˆy sDy qytqh±t tqh±t tqhy1±t

change plus the forecast level in periodtqhy1. Supposehs1 so that , thenŷ 'yt±t t

for tGt, proving unbiasedness.
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This result generalises forh)1 by a recursive argument. As Osborn(2002) notes
the near non-invertibility of the error term in the first-differenced model suggests
that empirically lags are likely to be added to mop up the serial correlation, which
will lessen the ‘adaptability’ of the model. Nevertheless, it is evident that estimating
(1) with an assumed constant mean will generate biased forecasts to an extent that
depends uponm ym and the timing oft relative to the forecast origin.2 1

Fundamentally, causal variables(variables that actually determine the outcome)

Nevertheless, we welcome the rapid increase in reporting of forecast-confidence intervals as an5

addition to point forecasts and the use of(e.g.) fan charts to represent uncertainty: Ericsson(2001)
provides an exposition.

Clements and Hendry(1997) and Osborn(2002) provide analyses of differencing for seasonal data.6
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cannot be proved to help a model’s forecasts. After a shift, a previously well-
specified model may forecast less accurately than a model with no causal variables.
This result helps explain the rankings in forecast competitions. The best causal
description of the economy may not be robust to sudden shifts, so loses to more
adaptive models for forecasting over periods when shifts occurred. Also, pooling
can be beneficial because different models are differentially affected by unanticipated
shifts. Furthermore, a levels shift can temporarily contaminate a model’s short-term
forecasts, but the effects wear off, so earlier longer-term forecasts of growth rates
can be more accurate than 1-step ahead forecasts made a few periods after a shift.
Thus, explanations of the empirical results are provided by the more general
framework. By itself that does not preclude alternative explanations, therefore
Section 3.1 investigates whether other potential sources of forecast errors could
account for the evidence.

3.1. A forecast-error taxonomy

Clements and Hendry(1998, 1999a) derive the following nine sources of forecast
error as a comprehensive decomposition of deviations between announced forecasts
and realised outcomes:

1. shifts in the coefficients of deterministic terms;
2. shifts in the coefficients of stochastic terms;
3. mis-specification of deterministic terms;
4. mis-specification of stochastic terms;
5. mis-estimation of the coefficients of deterministic terms;
6. mis-estimation of the coefficients of stochastic terms;
7. mis-measurement of the data;
8. changes in the variances of the errors; and
9. errors cumulating over the forecast horizon.

Any one—or combinations—of these nine sources could cause serious forecast
errors. However, theoretical analyses, Monte Carlo simulations, and empirical
evidence all suggest that the first source is the most pernicious, typically inducing
systematic forecast failure. Clements and Hendry interpret shifts in the coefficients
of deterministic terms as shifts in the deterministic terms themselves, so the next
most serious problems are those which are equivalent to such deterministic shifts,
including the third, fifth and seventh sources. For example, omitting a linear trend
or using a biased estimate of its coefficient are equivalent forms of mistake, as may
be data mis-measurement at the forecast origin in models where such a measurement
error mimics a deterministic shift.

Conversely, the other sources of forecast error have less damaging effects. For
example, even quite large shifts in the coefficients of mean-zero stochastic variables
have small effects on forecast errors: see Hendry and Doornik(1997), Hendry
(2000b) and Section 5.6. The last two sources in the taxonomy certainly reduce
forecast accuracy, but large stochastic perturbations seem needed to precipitate
systematic forecast failure.
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The ‘optimality’ paradigm discussed in Section 2 offers no explanation for
observed forecast failures. At various stages, bad forecasts have been attributed
(especially in popular discussions, such as the Press) to ‘mis-specified models’,
‘poor methods’, ‘inaccurate data’, ‘incorrect estimation’, ‘data-based model selec-
tion’ and so on, without those claims being proved. The research in Clements and
Hendry(1999a) demonstrates the lack of foundation for most of such ‘explanations’,
whereas the sources follow as discussed above.

4. ‘Principles’ based on empirical forecast performance

Allen and Fildes(2001) thoroughly review the empirical evidence on the practical
success of different approaches to economic forecasting based on econometric
models. They find that models which are admissible reductions of VARs that
commenced with relatively generous lag specifications, estimated by least squares,
and tested for constant parameters do best on average. Thus, their conclusions are
consistent with the theory implications of the previous section.

They regard the following as issues that remain unresolved from past performance:

1. the role of causal variables, particularly when such variables are forecast by
auxiliary models;

2. whether congruent models outperform non-congruent, and hence:
3. whether there is value-added in mis-specification testing when selecting forecast-

ing models; and
4. whether cointegration restrictions improve forecasts.

However, all four of their unresolved issues have no generic answer: Clements
and Hendry(1999a) show that under the assumptions of Section 3, causal variables
cannot be proved to dominate non-causal; that congruent models need not outperform
non-congruent, so rigorous mis-specification testing need not help for selecting
forecasting models; and that equilibrium-mean shifts induce forecast failure, so
cointegration will improve forecasting only if the equilibrium means remain constant.
Conversely, if an economy were reducible by transformations to a stationary
stochastic process, so unconditional moments remained constant over time, then
well-tested, causally-relevant congruent models which embodied valid restrictions
would both fit best, and by encompassing, dominate in forecasting on average.
Depending on the time periods examined and the behaviour of the data therein,
either state of nature might hold, so ambiguous empirical findings can emerge.

Against this background, we now evaluate 10 areas where explanations can be
offered consistent with the empirical evidence.

5. Ten areas of understanding

Here we consider:
1. The occurrence of forecast failure(5.1).
2. The role of causal models in forecasting(5.2).
3. Using intercept corrections to offset deterministic shifts(5.3).
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4. Unit roots and cointegration(5.4).
5. Model selection and ‘data mining’(5.5).
6. Deterministic shifts vs. other breaks(5.6).
7. Explaining the outcomes of forecasting competitions(5.7).
8. The role of simplicity in forecasting(5.8).
9. Evaluating forecasts(5.9).
10. The behaviour of difference-stationary vs. trend-stationary models(5.10).

We consider these in turn in the following sub-sections.

5.1. Accounting for forecast failure

The ingredients have all been laid out above: in the language of Clements and
Hendry (1999a), deterministic shifts or their equivalent are the primary culprit. In
fact, the widespread use of cointegration-based equilibrium-correction models
(EqCMs) in macro-econometric forecasting may have increased their sensitivity to
deterministic shifts, particularly in equilibrium means. An upward shift(say) in
such a mean induces a ‘disequilibrium’ which the model is designed to remove, by
adjusting in the opposite direction, hence the forecasts will be for a decline precisely
when the data show a jump up, and conversely. An example is provided in Hendry
and Doornik(1997). Clements and Hendry(1996a, 2002b) provide comprehensive
discussions.

5.2. The role of causal models in forecasting

In part, Section 6 will address this issue, but here we record the two most salient
aspects. In ‘normal times’ when there are no large deterministic shifts or their
equivalent, then a congruent encompassing model will dominate both in-sample and
over the forecast period. Unfortunately, as the old joke goes, the last 1000 years
have been an exceptional period, and there is every likelihood that the future will
see large, unanticipated shocks—indeed, the recent collapse of the Telecoms industry
is a reminder that new uncertainties occur. Consequently, causal models cannot be
relied on to dominate out of sample. Application of the forecast-error taxonomy to
a vector EqCM, VAR and VAR in differences in Clements and Hendry(1999a)
reveals that they suffer equally on average when a break occurs after forecasts are
produced, so the possibility of future unanticipated breaks is not an argument against
causal models or in favour of more adaptive devices. Thus, causal models could
maintain a major role if they could be made more adaptive to breaks, a theme
explored in Section 5.3.

5.3. Intercept corrections

A potential solution to deterministic shifts is intercept correction(IC), adjusting
an equation’s constant term when forecasting, usually based on realised equation
errors immediately prior to the forecast origin. Historically, IC has been heavily
criticised, sometimes named con factor, cheat term, or ad hoc adjustment. However,
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one basis for the value-added from ICs is the result that models with no causal
variables might outperform those with correctly included causal variables: ICs are
certainly non-causal(though they might proxy for unmodelled causal factors), so
the issue is whether they are the right type of non-causal factor. Clements and
Hendry (1996a, 1999a) formally establish that when the DGP is susceptible to
structural breaks, forecasts made in ignorance of such changes having recently
occurred can be improved by ICs which reflect, and so offset, deterministic shifts
that would otherwise swamp useful information from causal factors. ICs can reduce
the biases of forecasts from vector EqCMs(VEqCMs) when there are shifts in
deterministic terms, provided the change has occurred prior to the forecast origin.

Since ICs offset deterministic shifts after they have occurred, they can be
implemented if such shifts are suspected, especially following recent forecast failure.
Thus, although a pessimistic result, the refutation of the claim that causal models
should outperform non-causal models is an important step towards understanding
the actual behaviour of economic forecasts, and the value-added of judgement
therein. Nevertheless, any forecast-error bias reduction is typically achieved only at
the cost of an increase in the forecast-error variance, so that in an unchanged world,
for example, the indiscriminate use of ICs may adversely affect accuracy measured
by squared-error loss. This suggests a more judicious use of ICs, and in particular,
perhaps making the decision conditional on the outcome of a pre-test for structural
change, the topic of Section 7.1.

5.4. Unit roots and cointegration

Current best practice in econometrics uses the technique of cointegration to
remove another major source of non-stationarity, that due to stochastic trends or
unit roots; see Hendry and Juselius(2000, 2001) for recent expositions. Unfortu-
nately, cointegration makes the resulting models sensitive to shifts in their equilib-
rium means. Hansen and Johansen(1998) describe tests for constancy in a VEqCM,
and Johansen et al.(2000) consider cointegration analysis in the presence of
structural breaks in the deterministic trend.

There are several potential solutions to offsetting the detrimental impact of
equilibrium-mean shifts on forecast accuracy, although there is little hard evidence
on their relative efficacy to date.

First, Clements and Hendry(1995) show that neglecting possible long-run
relations between the variables should be relatively benign, unless one wishes to
forecast linear combinations of the variables given by those long-run relations. The
existence of cointegration matters, since some combinations becomeI(0), but its
imposition seems less important. Instead, ignoring cointegration but analysing
differences may be beneficial if the means of the cointegrating relations are non-
constant: see Clements and Hendry(1996a). Thus, VARs in growth rates offer some
protection, or ‘robustification’, against non-constancy relative to vector equilibrium-
correction models.

Second, ICs can be used in VEqCMs to make them more robust to such shifts,
and given the pernicious consequences of equilibrium-mean shifts, doing so becomes
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a priority. Thus, whenI(0) transformations need not be stationary, cointegration is
most useful as a modelling device, rather than a method of improving ex ante
forecasting.

5.5. Model selection or ‘data mining’

Clements and Hendry(2002c) investigate the impact of model-selection strategies
on forecast performance. They examine both constant and non-constant processes,
using restricted, unrestricted and selected models, when the DGP is one of the first
two. Thus, they avoid biasing the outcome in favour of always using the simplest
model, which happens to work because it coincides with the DGP. Moreover, the
non-constancies can occur in an irrelevant variable that was nevertheless included
through ‘data mining’. Their selection strategy is general-to-specific(Gets), and
they find no evidence thatGets induces significant over-fitting, nor thereby causes
forecast-failure rejection rates to greatly exceed nominal sizes. Parameter non-
constancies put a premium on correct specification, but in general, model-selection
effects appear to be relatively small, and progressive research is able to detect the
mis-specifications considered.

5.6. Deterministic shifts vs. other breaks

There exists a vast literature on testing for structural breaks or non-constancies:
see for example, Hansen(2001). From a forecasting perspective, breaks that occur
towards the end of the estimation period are of primary interest, although unmodelled
breaks anywhere in the series may affect the ability to detect more recent breaks.

Hendry (2000b) finds that structural breaks which leave the unconditional
expectations of theI(0) components unaltered inI(1) cointegrated time series are
not easily detected by conventional constancy tests. Thus, dynamics and adjustment
speeds may alter without detection. However, shifts in long-run means are generally
easy to detect. Using a VEqCM model class, he contrasts the ease of detection of
‘deterministic’ and ‘stochastic’ shifts by Monte Carlo.

5.7. Explaining the results of forecasting competitions

The major forecasting competitions involve many hundreds of time series and
large numbers of forecasting models. Makridakis and Hibon(2000) record the latest
in a sequence of such competitions, discussed by Clements and Hendry(2001b)
and others in theInternational Journal of Forcasting, vol. 97, Fildes and Ord
(2002) consider the role such competitions have played in improving forecasting
practice and research, and conclude that the four main implications of forecasting
competitions are:

a. ‘simple methods do best’;
b. ‘the accuracy measure matters’;
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c. ‘pooling helps’; and
d. ‘the evaluation horizon matters’.

The explanation for the four findings in(a)–(d) has three facets. The first facet
is that economies are non-stationary processes which are not reducible to stationarity
by differencing, thereby generating moments that are non-constant over time. The
second facet is that some models are relatively robust to deterministic shifts, either
by transforming their impact into ‘blips’ or by adapting rapidly to them. The third
facet is that most measures of forecast accuracy are not invariant under data
transformations(see Clements and Hendry, 1993).

We comment in Section 5.8 on(a), but the combination of the first two facets is
the key. The third directly explains(b). However,(c) remains to be analytically
modelled for general settings: see Section 7.5. Finally, the evaluation horizon matters
for all three reasons, because no method can be robust to breaks that occur after
forecasts are announced, so the shorter the horizon when breaks are intermittent,
the more that favours robust devices. This also appears to explain the findings in
Eitrheim et al.(1999).

5.8. Simplicity in forecasting

An unfortunate confusion which has resulted from the findings of forecasting
competitions is that ‘simpler models do better’: see e.g. Kennedy(2002). The
source of the successful approaches is their adaptability(primarily to shifts in
intercepts and trends), not their simplicity per se: Clements and Hendry(1999b,
2001b) explain why. It just happens that, to date, many adaptive models have been
simple. Important examples include exponentially-weighted moving averages
(EWMAs), or double-differenced devices(‘same change’ forecasts, or ).2ˆD y s0Tq1

A linear deterministic trend is a simple model which does badlyŷ saqb Tq1Ž .Tq1

in forecasting(see Section 5.10), so simplicity alone is not the relevant criterion.
An important implication of the finding that adaptability dominates verisimilitude
in forecasting competitions is that ex ante forecasting comparisons should not be
used to evaluate models(except for forecasting): see Section 6.1.

5.9. Evaluating forecasts

Forecast evaluation has long been based on statistical criteria, from examining
moments—such as forecast biases and variances—through tests for efficiency and
the related literature on forecast encompassing, to comparisons between different
forecasting devices as discussed above. More recently, attention has turned to the
evaluation of forecasts when they are instrumental in decision taking, so an explicit
loss function for forecast errors defines the costs: see Granger(2001), Granger and
Pesaran(2000a,b) and Pesaran and Skouras(2002), although decisionycost based
assessment has been widely accepted as desirable in principle for a long time.
Consequently, the choice of forecasts depends on their purpose, as represented by
the loss function, rather than just a statistical criterion: it seems natural that a stock
broker measures the value of forecasts by their monetary return, not their MSFE.
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This development also removes the ambiguity of evaluation based on(say) MSFE
measures due to their lack of invariance under linear transformations when the
outcome is from a multivariate or multi-horizon forecasting exercise(see Clements
and Hendry, 1993).

A related topic is the increased focus on density forecasting, where the complete
probability distribution of possible future outcomes is forecast: see Tay and Wallis
(2000) for a survey, Clements and Smith(2000b) for a multi-step application
comparing linear and non-linear models, and Diebold et al.(1998) for the role of
density forecasting in decision taking. Earlier reporting of forecast-error means and
variances only corresponded to a complete characterisation of their density for
normal distributions. Most calculated ‘fan charts’ correspond to that scenario, but
that is not an inherent feature, and asymmetric forecast intervals are discussed in
Hatch(2001) and Tay and Wallis(2000) (which they call ‘prediction intervals’).

The final aspect we note is that conditional heteroscedasticity may entail changing
widths of forecast intervals, induced by(say) autoregressive(ARCH: see Engle,
1982), or related error processes(e.g. GARCH: see Bollerslev et al., 1994),
stochastic volatility(see inter alia, Kim et al., 1998), or inherent in the model
specification (see e.g. Richard and Zhang, 1996). Granger et al.(1989) and
Christoffersen(1998) consider forecast interval evaluation for ‘dynamic’ intervals
(that reflect the changing volatility of the ARCH-type process) and Clements and
Taylor (2002) consider methods appropriate for high-frequency data that exhibit
periodic volatility patterns.

5.10. Difference-stationary vs. trend-stationary models

Difference-stationary(DS) and trend-stationary(TS) models have markedly
different implications for forecasting when the properties of each are derived as if
it were the DGP: see Sampson(1991). However, such a state of nature can never
be actualised: only one model can be the DGP. Consequently, Clements and Hendry
(2001a) examine forecasting with the two models when the DGP is in turn either
DS or TS, so that the other model is then mis-specified. They consider known and
estimated parameters, letting the relation between the estimation sample,T, and the
forecast horizonh vary. For known parameters, when a TS process is the DGP, the
forecast-error variances of both models areO(1); and when the DS process is the
DGP, both areO(h). Thus, the apparently very different property of the models is
due purely to the behaviour of the DGPs: given the DGP, the models actually have
similar behaviour. With parameter-estimation uncertainty in the TS DGP, both
models’ forecast-error variances increase as the square of the horizon for fixedT,
the DSyTS variance ratio goes to infinity asT increases—but less quickly thanh—
whereas for faster rates of increase ofT, the ratio converges to 2. For the DS DGP,
both the TS and DS models’ variances are of the same order: only whenT increases
at a faster rate thanh does the order of the TS model variance exceed that of the
DS model. Their Monte Carlo simulations corroborated these results, as well as the
serious mis-calculation of the forecast intervals when the other model is the DGP.
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In terms of Section 3, when deterministic shifts occur, the DS model is
considerably more adaptive than the TS, which rapidly produces systematic forecast
failure, exacerbated by the calculation of its forecast-confidence intervals being far
too narrow inI(1) processes: see Hendry(2001).

6. Implications for model selection

A number of important implications follow from the corroboration of the general
forecasting theory in Section 3 by the evidence presented above. Here we focus on
the role of forecasts in selecting econometric models in Section 6.1; the implications
of forecast-error taxonomies in Section 6.2, the role of forecasts in selecting policy
models in Section 6.3, and impulse-response analyses in Section 6.4.

6.1. The role of forecasts in econometric model selection

Forecasting success is not a good index for model selection(other than for
forecasting), and certainly should not be used for selecting policy models, a theme
explored further in Section 6.3. The raison d’etre of developing rigorously tested,ˆ
congruent and encompassing econometric systems is for policy analysis, not
forecasting. Second, forecast failure is equally not a ground for model rejection
(with the same caveat). Consequently, a focus on ‘out-of-sample’ forecast perform-
ance to judge models, usually because of fears over ‘data-mining’, is unsustainable
(see, e.g. Newbold, 1993, p. 658). In any case, as Section 5.5 shows, data-based
model selection does not seem likely to explain forecast failure. Thus, although
some failures are due to bad models, and some successes occur despite serious mis-
specification, the observation of failure per se merely denotes that something has
changed relative to the previous state, with no logically valid implications for the
model of that state.

Nor do the above findings offer any support for the belief that a greater reliance
on economic theory will help forecasting models(see, e.g. Diebold, 1998), because
that does not tackle the root source of forecast failure. Instead, a realistic alternative
is to construct forecasting models which adapt quickly after any shift is discovered,
so that systematic forecast failure is avoided. This involves re-designing econometric
models to capture some of the robustness characteristics of the models that win
forecasting competitions. As presaged above, one possible approach is to intercept
correct a ‘causal’ model’s forecasts, an issue also addressed in Section 7.1.

6.2. Implications of the forecast-error taxonomy

The general ‘non-parametric’ forecast-error taxonomy presented in Hendry
(2000a) formalises that in Section 3.1, and confirms the conclusions reached in that
section. Since causally-relevant variables cannot be proved to out-perform non-
causal in forecasting, the basis is removed for asserting that agents’ expectations
should be ‘rational’, namely coincide with the conditional expectation of the variable
at the future date. While agents may well have access to all the relevant information,
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they cannot know how every component will enter a future joint data density which
changes in unanticipated ways.

An obvious alternative is that agents use the devices that win forecasting
competitions. If so, by automatically adjusting to movements in the policy variables,
their forecasts may be invariant to changes in policy rules, matching the absence of
empirical evidence supporting the Lucas(1976) critique (see Ericsson and Irons,
1995). Conversely, econometric models which embodied data-based proxies for such
agents’ prediction rules would also prove resilient to policy-regime shifts.

6.3. The role of forecasts in selecting policy models

Hendry and Mizon(2000b) note that ‘the policy implications derived from any
estimated macro-econometric system depend on the formulation of its equations, the
methodology used for the empirical modelling and evaluation, the approach to
policy analysis, and the forecast performance’. They criticise current practice in all
four areas, but in this section, we are primarily concerned with the role of forecast
performance in selecting policy models, about which they draw two main
conclusions:

● being the ‘best’ forecasting model does not justify its policy use; and
● forecast failure is insufficient to reject a policy model.

The first holds because the class of models that ‘wins’ forecasting competitions
is usually badly mis-specified in econometric terms, and rarely has any implications
for economic-policy analysis, lacking both target variables and policy instruments.
Moreover, intercept corrections could improve forecast performance without chang-
ing policy advice, confirming their argument. The second holds because forecast
failure reflects unanticipated deterministic shifts, which need not(but could) affect
policy conclusions. Thus, neither forecast success nor failure entails either good or
bad policy advice: policy models need policy evaluation.

Since shifts in policy regimes correspond to post-forecasting breaks for extrapo-
lative devices, Hendry and Mizon(2000a) note that neither econometric models
nor time-series predictors alone are adequate, and provide an empirical illustration
of combining them.

6.4. Impulse-response analyses

The difficulty of detecting shifts in policy-relevant parameters has adverse
implications for impulse-response analyses. Many vector autoregressions(VARs)
are formulated in the differences of economic variables, so changes in their intercepts
and coefficients may not be detected even if tested for. In such a state of nature,
full-sample estimates become a weighted average of the different regimes operating
in sub-samples, so may not represent the correct policy outcomes. Thus, the very
breaks that are least harmful in forecasting are most detrimental for policy advice.
Since Hendry and Mizon(2000b) also list a range of well-known problems with
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impulse–response analyses, it is clear that more reliable approaches are urgently
required.

7. Ten areas in need of improved understanding

Ten inter-related areas where analytical insights may yield substantial benefits
are:

1. Pre-testing for the inclusion of intercept corrections(7.1).
2. Modelling shifts(7.2).
3. Inter-forecast smoothing(7.3).
4. The role of survey information in forecasting(7.4).
5. Pooling of forecasts and forecast encompassing(7.5).
6. Discriminating measurement errors from innovation shifts(7.6).
7. Multi-step estimation for multi-step forecasting(7.7).
8. The advantages of explicitly checking co-breaking for forecasting(7.8).
9. Attempts to forecast rare events(7.9), and the closely related issue of
10. Leading indicators in forecasting(7.10).

We consider these in turn.

7.1. Pre-testing for intercept corrections

In real time, sequences of forecasts are made from successive forecast origins,
for each of which the constancy of the model may be questioned, and various
actions taken in the event of rejection. In this section we consider ‘model adaptation’
using the simple expedient of an intercept correction, where the issue of interest is
whether pre-testing for a break can yield gains relative to their blanket application
or, conversely, no intervention.

Clements and Hendry(2001d) take just this set up, that is, forecasting is an
ongoing venture, and series of 1 toh-step ahead forecasts are made at each of a
sequence of forecast origins. The ‘historical sample’ lengthens by one observation
each time the forecast origin moves forward, so the possibility of testing for
structural change, and the action to be taken if it is detected, arises afresh. One
testing strategy is the repeated application of one-off tests for structural change.
Alternatively, the sequential testing procedures of Chu et al.(1996) monitor for
structural change as new observations accrue. The overall size of a sequence of
repeated tests will approach unity as the number of applications(i.e. forecast
origins) goes to infinity, whereas the Chu et al.(1996) sequential CUSUM test has
the correct asymptotic size by construction. Whether or not it is costly to falsely
reject constancy will in part depend on the form of the intervention to be made, but
it is also likely that the sequential tests will lack power when breaks do occur. A
full investigation needs to be undertaken—here we report an example based on the
repeated application of one-off tests.

One possible strategy is automatic IC, whereby at each forecast origin, the
forecasts are set ‘back on track’, by making a correction to the equations’ intercepts
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based on the most recently observed errors. Such a strategy is implemented by
augmenting the model with a dummy variable which takes values of unity in the
last l periods. Thus, for a forecast originT, and settingls1, this form of intervention
is equivalent to estimating the model on data up to timeTy1. There are then two
possibilities: a constant adjustment and an impulse adjustment, depending on whether
the dummy variable is assumed to take the value of unity or zero over the period
{ Tq1,...,Tqh} . In the first case, forecasts are generated from a model corrected by
the vector of in-sample errors at periodT (again, assumingls1). In the second
case, when the dummy variable is zero over the forecast period, the correction only
affects the estimated parameters(by ignoring the periodT observation whenls1).

The form of the recommended correction will partly depend on the model, namely
whether the model is in levels, differences, or is a VEqCM(e.g. constant adjustments
are likely to be a better response to equilibrium-mean shifts in VEqCMs), and
partly on the ‘permanence’ of the break. Thetiming, l, of the first unit value in the
dummy will depend on the point at which the break occurred, the trade-off between
forecast-error bias reduction and variance increases, and the type of shock. In
particular, the last choice needs to reflect that an end-of-sample outlier may be a
measurement error, or an impulse, rather than a step shift.

Clements and Hendry(2001d) consider two strategies that employ pre-tests of
parameter constancy. In the first(Test ), at each forecast origin, either the purely1

model-based forecasts or the intercept-corrected forecasts—based on whether or not
a test onh 1-step forecasts up to the forecast origin is significant—is selected. If a
break is signalled, a correction is applied based on the lastl errors. The second
strategy retains information on all previous constancy rejections(Test ), and a2

dummy variable is added for each forecast origin at which constancy was rejected.
As doing so should improve in-sample fit, the constancy test should be more likely
to reject, in which case, a dummy is added for the lastl periods up to the forecast
origin as with the other strategy.

They examine the performance of a four-lag VAR for output growthDy and the
spreadS (between 1 year and 3 month Treasury Bill rates) from 1959:3 to 2001:1.
Their first forecast origin is 1969:4 with a maximum horizon of eight quarters
which generates 118 sequences of 1 to 8-step ahead forecasts. Fig. 1 reports the
MSFEs forS across the various strategies whenls4 (similar results hold whenls
1). The constant adjustment does much less well than an impulse; using a more
stringent significance level has little effect; it is slightly better to test than always
correct; and Test is somewhat better than Test , but the difference is marginal.1 2

Never correcting is worse than always using an impulse, but much better than a
constant adjustment. A similar pattern was found forDy, but with a more marked
improvement of Test over Test .1 2

Fig. 2 records the rejection frequencies for three forms of Chow(1960) test on
the constancy of the VAR equation forS, and one system test, all scaled by their
5% 1-off critical values. As can be seen, the forecast errors seem to be drawn from
a 2-regime process, switching in 1982, after which it enters a much more quiescent
state. In the early period, ‘outliers’ proliferate, hence the benefit of impulse over
constant adjustments, but after 1982(the bulk of the evaluation sample) no breaks
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Fig. 1. MSFEs for forecasting the spread.

occur, which helps explain the poor performance of always using a constant
adjustment.

Investigation of theform the IC might take could prove useful. An example of a
way of restricting the ICs is suggested by Bewley(2000), who considers imple-
menting ICs on the lines discussed in Clements and Hendry(1999a), using an
alternative parameterisation of the deterministic terms in the VAR. The idea is to
isolate the long-run growth in the system, given by the vectord, as the vector of
intercepts, so that shifts in growth rates are more easily discerned: a second
advantage is that zero restrictions can be placed on specific elements ofd. For
simplicity, consider ann-dimensional VAR in levels with a maximum lag ofps2:

x stqA x qA x q´ (3)t 1 ty1 2 ty2 t

where ´ ;IN w0,V x. In VEqCM form with r cointegrating vectorsb9x , (3)t n ´ t

becomes;

Dx stqab9x qB Dx q´ (4)t ty1 1 ty1 t

where ab9sA qA yI , and B syA . In the Clements and Hendry(1999a)1 2 n 1 2

formulation:

Dx ydsa b9x ym qB Dx yd q´ (5)Ž . Ž .t ty1 1 ty1 t

where ts(I yB ) dyam with EwDx xsd and Ewb9x xsm when there are non 1 t t
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Fig. 2. Chow test rejection frequencies forS and the VAR.

breaks. Forecasts ofx will approach linear time trends with sloped as the horizont

increases: thus, it is important to accurately estimated. Whenas0, Bewley(2000)
sets to zero the elements ofd for variables that do not exhibit drift, which can often
be based on economic analysis(see Hendry and Doornik, 1997, for an illustration).
Such restrictions are non-linear in(5), and infeasible ont in (3) or (4). However,
applying the Bewley(1979) transform to(4) delivers:

2Dx sdqD b9x ym qC D x qv (6)Ž .t ty1 0 t t

whereC sy(IyB ) B , Ds(IyB ) a. Equivalent forecasts to(4) are obtainedy1 y1
0 1 1 1

if, given a super-consistent estimate ofb, (6) is estimated usingDx as anty1

instrument forD x . Oncea/0, so the cointegration rank is non-zero, the relevant2
t

restrictions includeb9ds0, not just somed s0. Moreover, tests for deterministici

shifts involved and m, whereas only the combined interceptdyDm, is available.
A test focusing specifically on shifts inm would be valuable.

7.2. Modelling shifts

Again from a real time perspective, Phillips(1994, 1996) proposes a formal
procedure for re-selecting and re-estimating a model as the sample changes. This7

amounts to a more substantial revision to the equations than adjustments to the
equations’ intercepts, and he finds improved forecasts.

This section draws on ch. 10 of Clements and Hendry(1999a).7
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Other authors have focused on the possibility of modelling intercept shifts using
a variety of regime-switching models. The idea behind the residual-based method
of intercept corrections is that the structural change occurs close to the end of the
sample but is unknown to the forecaster. However, in some instances a time series
may have exhibited a sudden change in mean over the sample period. For example,
consider the time series depicted by Hamilton(1993, Figures 2–4, pp. 232–234).
Then a number of possibilities arise, one of which is to include appropriate dummy
variables (impulse or shift, depending on whether the change is immediately
reversed) to capture the effects of outliers or ‘one-off’ factors, without which the
model may not be constant over the past. This strategy is popular in econometric
modelling: see, for example, Clements and Mizon(1991). However, to the extent
that these ‘one-off’ factors could not have been foreseen ex ante and may occur
again, the model standard error is an under-estimate of the true uncertainty inherent
in explaining the dependent variable(1-step ahead), and forecast intervals derived
from the model may be similarly misleading. Thus, a more accurate picture of the
uncertainty surrounding the model predictions may be obtained by explicitly building
into the probabilistic structure of the model the possibility that further regime
changes may occur. Hamilton(1989) suggested using Markov switching regression
(MS-R) models in these circumstances, where the temporal dependence in time
series suggested the use of autoregressions(hence, MS-AR), building on the work
of, e.g. Goldfeld and Quandt(1973). However, forecast intervals(with a reasonably
high nominal coverage level) even from models that omit this additional source of
uncertainty are often found to be alarmingly wide, so that a greater benefit would
appear to be any reductions in bias that might be achieved.

In this regard, consider the model:

Dy ym s sa Dy ym s q´ (7)Ž . Ž Ž ..t t ty1 ty1 t

where´ ;INw0,s x, and the conditional meanm(s ) switches between two states:2
t ´ t

Sm )0 if s s1 expansion or boomŽ .1 tT
Um s (8)Ž .t
T
Vm -0 if s s2 contraction or recessionŽ .2 t

and the statess are determined by an ergodic Markov chain with transitiont

probabilities:

2

Z µ ∂p sPr s sj s si , p s1 ;i,jg 1,2 . (9)Ž .ij tq1 t ij8
js1

Clements and Krolzig(1998) show that the forecast function for this model can
be written as:

w zhh hˆ x |ˆDy ym sa Dy ym q m ym p qp y1 ya ßŽ . Ž . Ž .Tqh±T y T y 2 1 11 22 T±Ty ~

wherem is the unconditional mean ofDy , and is the filtered probability ofß̂y t T±T
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being in regime 2 corrected for the unconditional probability. Thus, the conditional
mean ofDy equals the optimal prediction rule for a linear model(the first term),Tqh

plus the contribution of the Markov regime-switching structure, which is given by
the term multiplied by where contains the information about the mostˆ ˆß ßT±T T±T

recent regime at the time the forecast is made. The contribution of the non-linear
part to the overall forecast also depends on the magnitude of the regime shifts,

, and on the persistence of regime shifts, pqp y1, relative to theZ Zm ym2 1 11 22

persistence of the Gaussian process, given bya. In their empirical model of post-
War US GDP growth, the predictive power of detected regime shifts is small, pq11

p y1,a, so the conditional expectation collapses to a linear prediction rule. In22

general, then, the persistence of regimes and the degree of precision with which the
current regime can be determined are important factors.

A number of other studies have reached fairly negative conclusions from a
forecasting perspective—at least, there appears to be no clear consensus that allowing
for non-linearities of these types leads to an improved forecast performance(see,
e.g. De Gooijer and Kumar, 1992). Clements and Smith(2000a,b) examine forecast
performance from various non-linear specifications: see Granger and Terasvirta
(1993), and Franses and Van Dijk(2000) for more extensive discussions of
forecasting with non-linear models. Swanson and White(1997) consider a ‘flexible
specification’ of linear and non-linear models where the latter is linked to shifts,
and Koop and Potter(2000) seek to differentiate between non-linearity, structural
breaks, and outliers: Stock and Watson(1999) conclude that non-linear models do
not substantively outperform linear.

New classes of model are almost certainly required, perhaps variants of the
switching class proposed by Engle and Smith(1998). Osborn et al.(2001) claim
that Markov switching models with leading indicators to help predict the regime
may fare better. The improvements result from being better able to predict entry
and exit to the ‘rare event’ of recessions: see Section 7.9. The simple algebra above
shows how this might help. However, as yet there does not seem to be a consensus
on the advantages of any given approach for DGPs with deterministic shifts.

7.3. Forecast smoothing

It is unclear whether forecasting agencies should regard ‘accuracy’ as their
dominant goal, relative to, say, ‘plausibility’. When forecasts of the same outcome
are made at different times, the implicit cost function may penalise sharp changes
between adjacent forecasts: Nordhaus(1987) presents evidence that such inter-
forecast smoothing occurs. Indeed, Don(2001) rejects the role of statistical criteria
in judging ‘forecast quality’, and favours ‘logical and economic coherence, and
stability’. The third of these entails smoothing the announced forecasts towards
previous statements when changes in available information entail more substantive
revisions. Clements(1995) examined judgmental adjustments introduced to reduce
‘high frequency’ fluctuations in forecasts, but found no significant positive first-
order serial correlation in the revisions to fixed-event forecasts for either the
judgmental or mechanical forecasts from theOxford Economic Forecasting model
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for the UK in the late 1980s and early 1990s. He concluded that their forecasts
were not excessively smooth in the Nordhaus(1987) sense, although ICs reduced
the dispersion of purely model-based forecasts. Further work in this area is reported
in Clements(1997) and Clements and Taylor(2001).

Analytical results are needed of the impact of smoothing behaviour by forecasting
agencies on the various sources of forecast error in Section 3.1, not just when there
are substantial white-noise measurement errors. For example, smoothing is antithet-
ical to using ICs based on the latest forecast errors, and must induce delayed
responses to deterministic shifts.

7.4. Role of surveys in forecasting

Survey information is possibly causal(in that the reported findings alter the
behaviour of some economic agents), but there does not seem much evidence on
that. Consequently, we regard surveys as a non-causal input to the forecasting
processes. Such information could be entered as a regressor in forecasting systems,
but that seems subject to the same problems as Emerson and Hendry(1996) found
for leading indicators(see Section 7.10). Alternatively, surveys might inform the
estimate of the variables at the forecast origin(see Section 7.6), perhaps guiding
the choice of IC. Clements and Hendry(1998) suggest using signal extraction
across all the available measures of the forecast origin to obtain better estimates.

7.5. Pooling of forecasts

There is a vast theoretical and empirical literature on pooling of forecasts(see
the survey in Clemen, 1989), but as yet few results within the general framework
of Section 3. If two forecasts are differentially biased(one upwards, one downwards)
it is easy to see why pooling would be an improvement over either. It is less easy
to prove that a combination need improve over the best of a group, particularly as
most forecasts will fail in the same direction after a deterministic shift—and all
must do so if forecasting over a period where such a break unexpectedly occurs.
Averaging does reduce variance, but only to the extent that separate sources of
information are used. An alternative interpretation is that, relative to a ‘baseline’
forecast, additional forecasts act like ICs, which we know can improve forecasting
performance not only if there are structural breaks, but also if there are deterministic
mis-specifications. For example, Clements and Hendry(1999a) interpret the cross-
country pooling in Hoogstrate et al.(2000) as a specific form of IC, although such
pooling can also be viewed as an application of Stein-James ‘shrinkage’ estimation
(see e.g. Judge and Bock, 1978).

The need to pool violates encompassing(see Lu and Mizon, 1991), so reveals
non-congruence, but it was shown above that congruence per se could not be
established as a necessary feature for good forecasts. Indeed, we suspect that only
non-encompassed models are worth pooling, since all others should be inferentially
redundant, but there is no proof available of that conjecture.
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7.6. Measurement errors vs. innovation shifts

Measurement errors in the latest available data on the forecast origin are bound
to impinge adversely on ICs: see Hillmer(1984). Other sources of information,
such as surveys as noted above, or the lapse of time, are needed to determine
whether ‘anomalous’ readings on the state of the economy represent a shift or a
mistake. Revisions to ‘first-release’ data are often substantial relative to the growth
of the variables being forecast, confirming the benefits of appraising all available
sources of information about the forecast origin, and suggesting ‘smoothing’ ICs,
but a formal analysis is not available as yet. Wallis(1986) considers the related
issue of the ‘ragged edge’ problem of missing data at the forecast origin.

7.7. Multi-step estimation

The general forecast-error taxonomy in Hendry(2000a), and special cases thereof
discussed by Clements and Hendry(1998, 1999a), do not accord a major role to
parameter estimation uncertainty or estimation biases. There are many reasons for
such a result: biased parameter estimates need not entail biased forecasts; estimation
uncertainty is of O(T ) in stationary, andO(T ) in integrated processes,y1y2 y1

relative to other error sources ofO(1); and even correct in-sample specification
with fully-efficient estimation is no guarantee of good forecasts in processes with
breaks. Nevertheless, ‘better’ estimation has remained a topic of interest in the
literature, including multi-step estimators which match the model estimation criterion
with the forecast horizon: Bhansali(2002) provides a comprehensive review. One
important reason may be(in)accurate estimates of deterministic terms.

Consider anh-step forecast from(3) whenps1 commencing at a forecast origin
at timeT. Since:

hy1 hy1
i h ix s A tqA x q A ´ , (10)Tqh 1 1 T 1 Tqhyi8 8

is0 is0

the postulated multi-step system is:

x sf qG x qe (11)Tqh h h T Tqh

Thus, forecasts after estimation from minimising e.g. in(11) areT e e9Z Zt t8tshq1

given by:

˜˜x̃ sf qG xTqh h h T

rather than from estimating the parameters of(3) and using the analog of(10):
hy1

i hˆ ˆˆ ˆx s A tqA x . (12)Tqh 1 1 T8
is0

When the process is stationary:
hy1

y1i hA s I yA I yA ,Ž . Ž .1 n 1 n 18
is0



323D.F. Hendry, M.P. Clements / Economic Modelling 20 (2003) 301–329

so:
hy1

y1i hA ts I yA I yA tsf .Ž . Ž .1 n 1 n 1 h8
is0

It is difficult to see how multi-step estimation could offer more than minor gains
in stationary processes. Despite biased parameter estimates, the long-run mean
Ewx xsm will be estimated consistently; and if the error process has a symmetrict

distribution, the forecasts from(12) will be unbiased, even if both the systematic
and error dynamics are mis-specified.

However, when the process is non-stationary, intercepts partly represent drift
terms, so mis-estimation could have more serious consequences. In the special case
A sI , tsd from (5), so letting ˆˆ́ sx yx1 n Tqh Tqh Tqh

hy1w zB E w zi hw z x |ˆ ˆ ˆ
x |ˆ ZE ´ x s hdyE A d q I yE A x (13)C Fx | Ž .y ~Tqh T 1 n 1 Ty ~ 8

D Gy ~is0

Let the ‘average error’ in as an estimator ofI at a fixed sample of sizeT beÂ1 n

L:

w z w z iix | x |ˆ ˆE A sI yL approximating byE A , I yL ,I yiLŽ .y ~ y ~1 n 1 n n

and similarly, the ‘average error’ in as an estimator ofd be h (Ew xsdyh),ˆ ˆd d

then neglecting interactions and powers:

B Ew z w zhy1 hy1w z
x |ˆ Z C FE ´ x ,h I y L hqL dqx . (14)x | x |Tqh T n Ty ~ 2 2y ~ y ~D G

A term like (14) could become large ash increases, especially as under-estimating
unit roots convertsd from a ‘drift term’ in an integrated process to an ‘equilibrium
mean’ in the resulting(pseudo-stationary) estimated process. For example, an
unmodelled negative moving-average error in(3) would induce such an outcome;
see Hall (1989). However, Clements and Hendry(1996b) find that serious mis-
specification of a mean-zero dynamic model is needed to ensure any gain from
multi-step estimators even in integrated processes: the simulation evidence in
Bhansali(2002) matches theirs, even though he also considers processes with non-
zero means. Chevillon(2000) provides an analytic explanation for such Monte
Carlo results in a scalar process, and shows that(e.g.) the biases and MSFEs are
not monotonic functions of the DGP parameters or the horizon. He also considers
DGPs with deterministic shifts just prior to the forecast origin(within h periods),
and suggests that multi-step estimation does not ensure advantages in that setting
either.

7.8. Co-breaking in forecasting

Co-breaking investigates whether shifts in deterministic terms in individual series
cancel under linear combinations(see Hendry, 1995; Hendry and Massmann, 2000
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Clements and Hendry, 1999a). At first sight, a finding of co-breaking might seem
invaluable for forecasting, since improved accuracy for the co-breaking combinations
must result. Unfortunately, in an ex ante context, some of the series where the break
itself occurs will still fail to be forecast well, so other combination will continue to
suffer forecast failure. Nevertheless, both for econometric modelling and for
forecasting some important variables, co-breaking seems likely to help.

As with cointegration, the feature which brings benefits is the existence of co-
breaking, rather than its imposition on a model, although the latter will help in
efficiency terms, and perhaps understanding. An estimation algorithm for conditional
co-breaking(in a dynamic model) has been proposed by Krolzig and Toro(2000);
and for unconditional co-breaking(in the underlying process) by Massmann(2001),
whose Monte Carlo experiments suggest reasonable power properties for tests of
co-breaking rank, although the break points were assumed known a priori. An
operational algorithm would have to jointly diagnose breaks and find co-breaking
vectors, along the lines of Johansen(1988).

7.9. Forecasting rare events

The analysis above has primarily been concerned with post-break corrections,
where the specification of the indicator variable to represent an intercept correction
can be seen as determining the estimate of the magnitude and timing of any putative
break. Forecasts made before a break and in ignorance of its impending occurrence
are bound to suffer its full effects. Consequently, attempts to forecast future ‘rare
events’ which entail deterministic shifts must be considered.

Environmental rare events such as hurricanes, earthquakes and volcano eruptions
usually issue ‘advance signs’ that are harbingers of impending problems. Recent
advances in(say) earth sciences for forecasting volcanic eruptions have focused on
leading indicators(e.g. the temperature of the vented steam, where rises indicate
increased activity), so we reconsider that avenue in Section 7.10. If economic
counterparts have corresponding attributes, then a search for ‘early-warning signals’
is merited. As noted above, Osborn et al.(2001) treat recessions as sufficiently rare
that leading indicators in a regime-shift model might help in their prediction, and
claim some success.

Unfortunately, many other rare events are not part of a sequence like business
cycles on which even a small sample of observations is available: examples include
the 1984 Banking Act and the 1986 Building Societies Act in the UK. Even so,
‘rare events’ should be partly predictable since they have causes, and some of those
causes may be discernible in advance. One route may be monitoring high-frequency
data, which should reflect deterministic shifts much sooner in real time, although
there is the corresponding drawback that such data tend to be noisier. Nevertheless,
‘early-warning’ signals merit serious consideration, and we believe that high-
frequency readings on the state of the economy must play a role in this area.

7.10. Leading indicators

Emerson and Hendry(1996) found that in theory and practice composite leading
indicators(CLIs) by themselves were not likely to prove good at forecasting relative
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to robustified devices. Moreover, adding a leading indicator to a VAR, as in Artis
et al. (1995), might even jeopardise the latter’s robustness for little gain Marsland
and Weale, 1992). More recently, Camba-Mendez et al.(2002) compare the
performance of CLIs against a set of ‘benchmark’ VARs, but find that they are out-
performed by ‘naive predictors’. They attribute this outcome to the choice of leading
indicators, and suggest improved measures can be found.

Another purpose of CLIs might be to ‘forecast’ a possible deterministic shift.
However, it is difficult to see why present approaches to selecting such indicators
would be optimal for that task, and recent experience remains somewhat discour-
aging: see Stock and Watson(1989, 1993).

8. Conclusions

A theory of economic forecasting that allows for structural breaks and mis-
specified models(inter alia) has radically different implications from one that
assumes stationarity and well-specified models. It can be shown that theorems that
can be readily established assuming stationarity and correct specification do not
carry over to the more realistic setting, where ‘realistic’ denotes consonance with
the empirical evidence on forecast failure and from forecasting competitions.
Proposals for ‘improving’ forecasting need to be examined and judged within this
setting. Doing so suggests ten areas where empirical performance can be understood
and ten that deserve greater research. Moreover, there are important implications
from the revised theory about selecting models for forecasting and economic policy
analysis.

References

Allen, P.G., Fildes, R.A., 2001. Econometric forecasting strategies and techniques. In: Armstrong, J.S.
(Ed.), Principles of Forecasting. Kluwer Academic Publishers, Boston, pp. 303–362.

Artis, M.J., Bladen-Hovell, R.C., Osborn, D.R., Smith, G.W., Zhang, W., 1995. Turning point prediction
in the UK using CSO leading indicators. Oxf. Econ. Pap. 47, 397–417.

Barrell, R.A., 2001. Forecasting the world economy, In: Hendry, and Ericsson, 2001, pp. 151–172.
Bewley, R.A., 1979. The direct estimation of the equilibrium response in a linear model. Econ. Lett. 3,

357–361.
Bewley, R.A,, 2000. Controlling spurious drift in macroeconomic forecasting models, Mimeo, University

of New South Wales.
Bhansali, R.J., 2002. Multi-step forecasting. In: Clements, and Hendry, 2002a, pp. 206–221.
Bollerslev, T., Engle, R.F., Nelson, D.B., 1994. ARCH models. In: Engle, R.F., McFadden, D.(Eds.),

The Handbook of Econometrics, Vol. 4. pp. 2959–3038 North-Holland.
Burns, T., 1986. The interpretation and use of economic predictions. Proceedings of the Royal Society,

No. A407, pp. 103–125.
Calzolari, G., 1981. A note on the variance of ex post forecasts in econometric models. Econometrica

49, 1593–1596.
Camba-Mendez, G., Kapetanios, G., Weale, M.R., Smith, R.J., 2002. The forecasting performance of

the OECD composite leading indicators for France, Germany, Italy and the UK. In: Clements, and
Hendry, 2002a, pp. 386–408.

Chevillon, G., 2000. Multi-step estimation for forecasting non-stationary processes. MPhil Thesis,
Economics Department, University of Oxford.



326 D.F. Hendry, M.P. Clements / Economic Modelling 20 (2003) 301–329

Chong, Y.Y., Hendry, D.F., 1986, Econometric evaluation of linear macro-economic models. Review of
Economic Studies, 53, 671–690. Reprinted in Granger, C.W.J.(Ed.) (1990), Modelling Economic
Series. Clarendon Press: Oxford.

Chow, G.C., 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica
28, 591–605.

Christoffersen, P.F., 1998. Evaluating interval forecasts. Int. Econ. Rev. 39, 841–862.
Chu, C.-S., Stinchcombe, M., White, H., 1996. Monitoring structural change. Econometrica 64,

1045–1065.
Clemen, R.T., 1989. Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5,

559–583.
Clements, M.P., 1995. Rationality and the role of judgement in macroeconomic forecasting. Econ. J.

105, 410–420.
Clements, M.P., 1997. Evaluating the rationality of fixed-event forecasts. J. Forecast. 16, 225–239.
Clements, M.P., Hendry, D.F., 1993. On the limitations of comparing mean squared forecast errors. J.

Forecast. 12, 617–637. With discussion. Reprinted in T.C. Mills(Ed.) Economic Forecasting. The
International Library of Critical Writings in Economics, Edward Elgar.

Clements, M.P., Hendry, D.F., 1995. Forecasting in cointegrated systems. J. Appl. Econometr., 10, 127–
146. Reprinted in T.C. Mills(Ed.) Economic Forecasting. The International Library of Critical
Writings in Economics, Edward Elgar.

Clements, M.P., Hendry, D.F., 1996a. Intercept corrections and structural change. J. Appl. Econometr.
11, 475–494.

Clements, M.P., Hendry, D.F., 1996b. Multi-step estimation for forecasting. Oxf. Bull. Econ. Stat. 58,
657–684.

Clements, M.P., Hendry, D.F., 1997. An empirical study of seasonal unit roots in forecasting. Int. J.
Forecast. 13, 341–356.

Clements, M.P., Hendry, D.F., 1998. Forecasting Economic Time Series. Cambridge University Press,
Cambridge.

Clements, M.P., Hendry, D.F., 1999a. Forecasting Non-stationary Economic Time Series. MIT Press,
Cambridge, Mass.

Clements, M.P., Hendry, D.F., 1999b. On winning forecasting competitions in economics. Spanish Econ.
Rev. 1, 123–160.

Clements, M.P., Hendry, D.F., 2001a. Forecasting with difference-stationary and trend-stationary models.
Econometr. J. 4, S1–S19.

Clements, M.P., Hendry, D.F., 2001b. Explaining the results of the M3 forecasting competition. Int. J.
Forecast. 97, 550–554.

Clements, M.P., Hendry, D.F., 2001c. An historical perspective on forecast errors. Nat. Instit. Econ. Rev.
177, 100–112.

Clements, M.P., Hendry, D.F., 2001d. Structural change and economic forecasting. Unpublished
typescript, Economics Department, University of Oxford.

Clements, M.P., Hendry, D.F.(Eds.) 2002a. A Companion to Economic Forecasting. Blackwells: Oxford.
Clements, M.P., Hendry, D.F., 2002b. Explaining forecast failure in macroeconomics. In: Clements, and

Hendry 2002a, pp. 539–571.
Clements, M.P., Hendry, D.F., 2002c. Modelling methodology and forecast failure. Econometr. J. 5,

319–344.
Clements, M.P., Krolzig, H.-M., 1998. A comparison of the forecast performance of Markov-switching

and threshold autoregressive models of US GNP. Econometr. J. 1, C47–75.
Clements, M.P., Mizon, G.E., 1991. Empirical analysis of macroeconomic time series: VAR and

structural models. Eur. Econ. Rev. 35, 887–932.
Clements, M.P., Smith, J., 2000a. Evaluating forecasts from SETAR models of exchange rates. J. Int.

Money Fin. 20, 133–148.
Clements, M.P., Smith, J., 2000b. Evaluating the forecast densities of linear and non-linear models:

applications to output growth and unemployment. J. Forecast. 19, 255–276.



327D.F. Hendry, M.P. Clements / Economic Modelling 20 (2003) 301–329

Clements, M.P., Taylor, N., 2001. Robust evaluation of fixed-event forecast rationality. J. Forecast. 20,
285–295.

Clements, M.P., Taylor, N., 2002. Evaluating prediction intervals for high-frequency data. J. App.
Econometr. Forthcoming.

Cooper, J.P., Nelson, C.R., 1975. The ex ante prediction performance of the St. Louis and FRB-MIT-
PENN econometric models and some results on composite predictors. J. Money, Credit Banking 7,
1–32.

De Gooijer, J.G., Kumar, K., 1992. Some recent developments in non-linear time series modelling,
testing and forecasting. Int. J. Forecast. 8, 135–156.

Dhrymes, P.J., et al., 1972. Criteria for evaluation of econometric models. Annal. Econ. Social Measure.
1, 291–324.

Diebold, F.X., 1998. The past, present and future of macroeconomic forecasting. J. Econ. Perspect. 12,
175–192.

Diebold, F.X., Gunther, T.A., Tay, A.S., 1998. Evaluating density forecasts: With applications to financial
risk management. Int. Econ. Rev. 39, 863–883.

Don, F.J.H., 2001. Forecasting in macroeconomics: A practitioner’s view. Economist 149, 155–175.
Eitrheim, Ø., Husebø, T.A., Nymoen, R., 1999. Equilibrium-correction vs. differencing in macroecono-

metric forecasting. Econ. Modell. 16, 515–544.
Emerson, R.A., Hendry, D.F., 1996. An evaluation of forecasting using leading indicators. J. Forecast.

15, 271–291.
Engle, R.F., 1982. Autoregressive conditional heteroscedasticity, with estimates of the variance of United

Kingdom inflation. Econometrica 50, 987–1007.
Engle, R.F., Smith, A.D., 1998. Stochastic permanent breaks. Rev. Econ. Stat. 81, 553–574.
Ericsson, N.R., 2001. Forecast uncertainty in economic modeling. In: Hendry and Ericsson, 2001, pp.

69–93.
Ericsson, N.R., Irons, J.S., 1995. The Lucas critique in practice: theory without measurement. In:

Hoover, K.D. (Ed.), Macroeconometrics: Developments, Tensions and Prospects. Kluwer Academic
Press, Dordrecht.

Fildes, R., Ord, K., 2002. Forecasting competitions—their role in improving forecasting practice and
research. In: Clements, and Hendry, 2002a, pp. 322–353.

Fildes, R.A., Makridakis, S., 1995. The impact of empirical accuracy studies on time series analysis
and forecasting. Int. Stat. Rev. 63, 289–308.

Franses, P.H., Van Dijk, D., 2000. Non-linear Time Series Models in Empirical Finance. Cambridge
University Press, Cambridge.

Goldfeld, S.M., Quandt, R.E., 1973. A Markov model for switching regressions. J. Econometr. 1, 3–16.
Granger, C.W.J., 2001. Evaluation of forecasts. In: Hendry and Ericsson, 2001, pp. 94–104.
Granger, C.W.J., Pesaran, M.H., 2000a. A decision-theoretic approach to forecast evaluation. In: Chan,

W.S., Li, W.K., Tong, H.(Eds.), Statistics and Finance. An Interface. Imperial College Press, London,
pp. 261–278.

Granger, C.W.J., Pesaran, M.H., 2000b. Economic and statistical measures of forecasting accuracy. J.
Forecast. 19, 537–560.

Granger, C.W.J., Terasvirta, T., 1993. Modelling Nonlinear Economic Relationships. Oxford University
Press, Oxford.

Granger, C.W.J., White, H., Kamstra, M., 1989. Interval forecasting: an analysis based upon ARCH-
quantile estimators. J. Econometr. 40, 87–96.

Hall, A., 1989. Testing for a unit root in the presence of moving average errors. Biometrika 76, 49–56.
Hamilton, J.D., 1989. A new approach to the economic analysis of nonstationary time series and the

business cycle. Econometrica 57, 357–384.
Hamilton, J.D., 1993. Estimation, inference, and forecasting of time series subject to changes in regime.

In: Maddala, G.S., Rao, C.R., Vinod, H.D.(Eds.), Handbook of Statistics, Vol. 11. North-Holland,
Amsterdam.

Hansen, B.E., 2001. The new econometrics of structural change; Understanding and dating changes in
US productivity, mimeo, Department of Economics, University of Wisconsin.



328 D.F. Hendry, M.P. Clements / Economic Modelling 20 (2003) 301–329

Hansen, H., Johansen, S., 1998. Some tests for parameter constancy in cointegrated VAR-models.
Mimeo, Economics Department, European University Institute.

Hatch, N., 2001. Modelling and forecasting at the Bank of England. In: Hendry, and Ericsson, 2001,
pp. 125–150.

Hendry, D.F., 1995. A theory of co-breaking. Mimeo, Nuffield College, University of Oxford.
Hendry, D.F., 2000a. A general forecast-error taxonomy. Mimeo, Nuffield College, Oxford.
Hendry, D.F., 2000b. On detectable and non-detectable structural change. Struct. Change Econ. Dynam.

11, 45–65.
Hendry, D.F., 2001. How economists forecast. In: Hendry and Ericsson, 2001, pp. 15–42.
Hendry, D.F., Doornik, J.A., 1997. The implications for econometric modelling of forecast failure. Scott.

J. Polit. Econ. 44, 437–461. Special Issue.
Hendry, D.F., Ericsson, N.R.(Eds.), 2001. Understanding Economic Forecasts. Cambridge, Mass.: MIT

Press.
Hendry, D.F., Juselius, K., 2000. Explaining Cointegration Analysis: Part I. Energy J. 21, 1–42.
Hendry, D.F., Juselius, K., 2001. Explaining Cointegration Analysis: Part II. Energy J. 22, 75–120.
Hendry, D.F., Massmann, M., 2000. Macro-econometric forecasting and co-breaking. Mimeo, Economics

Department, Oxford University.
Hendry, D.F., Mizon, G.E., 2000a. On selecting policy analysis models by forecast accuracy. In:

Atkinson, A.B., Glennerster, H., Stern, N.(Eds.), Putting Economics to Work: Volume in Honour of
Michio Morishima. STICERD, London School of Economics, pp. 71–113.

Hendry, D.F., Mizon, G.E., 2000b. Reformulating empirical macro-econometric modelling. Oxf. Rev.
Econ. Pol. 16, 138–159.

Hillmer, S., 1984. Monitoring and adjusting forecasts in the presence of additive outliers. J. Forecast.
3, 205–215.

Hoogstrate, A.J., Palm, F.C., Pfann, G.A., 2000. Pooling in dynamic panel data models: an application
to forecasting GDP growth rates. J. Bus. Econ. Stat. 18, 274–283.

Johansen, S, 1988. Statistical analysis of cointegration vectors. J. Econ. Dynam. Control, 12, 231–254.
Reprinted in R.F. Engle and C.W.J. Granger(Eds.), Long-Run Economic Relationships, Oxford
University Press, Oxford, 1991, 131–152.

Johansen, S., Mosconi, R., Nielsen, B., 2000. Cointegration analysis in the presence of structural breaks
in the deterministic trend. J. Econometr. 3, 216–249.

Judge, G.G., Bock, M.E., 1978. The Statistical Implications of Pre-Test and Stein-Rule Estimators in
Econometrics. North Holland Publishing Company, Amsterdam.

Kennedy, P.E., 2002. Sinning in the basement: What are the rules? The Ten Commandments of applied
econometrics. J. Econ. Surveys 16, 569–589.

Kim, S., Shephard, N., Chib, S., 1998. Stochastic volatility: likelihood inference and comparison with
ARCH models. Rev. Econ. Stud. 65, 361–393.

Klein, L.R., 1971. An Essay on the Theory of Economic Prediction. Markham Publishing Company,
Chicago.

Koop, G., Potter, S.M., 2000. Nonlinearity, structural breaks, or outliers in economic time series. In:
Barnett, W.A., Hendry, D.E., Hylleberg, S., Terasvirta, T., Tjostheim, D., Wurtz, A.(Eds.), Nonlinear
Econometric Modeling in Time Series Analysis. Cambridge University Press, Cambridge, pp. 61–78.

Krolzig, H.-M., Toro, J., 2000. Testing for cobreaking and superexogeneity in the presence of
deterministic shifts. Economics Discussion Paper 2000-W35, Nuffield College, Oxford.

Lu, M., Mizon, G.E., 1991. Forecast encompassing and model evaluation. In: Hackl, P., Westlund, A.H.
(Eds.), Economic Structural Change, Analysis and Forecasting. Springer-Verlag, Berlin, pp. 123–138.

Lucas, R.E., 1976. Econometric policy evaluation: a critique. In: Brunner, K., Meltzer, A.(Eds.), The
Phillips Curve and Labor Markets, vol. 1 of Carnegie-Rochester Conferences on Public Policy. North-
Holland Publishing Company, Amsterdam, pp. 19–46.

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., et al., 1982. The accuracy of extrapolation(time
series) methods: results of a forecasting competition. J. Forecast. 1, 111–153.

Makridakis, S., Hibon, M., 2000. The M3-competition: results, conclusions and implications. Int. J.
Forecast. 16, 451–476.



329D.F. Hendry, M.P. Clements / Economic Modelling 20 (2003) 301–329

Marsland, J., and Weale, M., 1992. The leading indicator in a VAR model of the UK. Unpublished
paper, Downing College and Clare College, University of Cambridge.

Massmann, M., 2001. Co-breaking in macroeconomic time series. Unpublished paper, Economics
Department, Oxford University.

McNees, S.K., 1990. The accuracy of macroeconomic forecasts. In: Klein, P.A.(Ed.), Analyzing
Modern Business Cycles. M.E. Sharpe Inc, London, pp. 143–173.

Mincer, J., Zarnowitz, V., 1969. The evaluation of economic forecasts. In: Mincer, J.(Ed.), Economic
Forecasts and Expectations. National Bureau of Economic Research, New York.

Newbold, P., 1993. Comment on ‘On the limitations of comparing mean squared forecast errors’, by
M.P. Clements and D.F. Hendry. J. Forecast. 12, 658–660.

Nordhaus, W.D., 1987. Forecasting efficiency: concepts and applications. Rev. Econ. Stat 69, 667–674.
Osborn, D., 2002. Unit root vs. deterministic representations of seasonality for forecasting. In: Clements

and Hendry, 2002a, pp. 409–431.
Osborn, D.R., Sensier, M., Simpson, P.W., 2001. Forecasting and the UK business cycle. In: Hendry

and Ericsson, 2001, pp. 105–124.
Pesaran, M.H., Skouras, S., 2002. Decision-based methods for forecast evaluation. In: Clements and

Hendry, 2002a, pp. 241–267.
Phillips, P.C.B., 1994. Bayes models and forecasts of Australian macroeconomic time series. In:

Hargreaves, C.(Ed.), Non-stationary Time-series Analysis and Cointegration. Oxford University
Press, Oxford, pp. 53–86.

Phillips, P.C.B., 1996. Econometric model determination. Econometrica 64, 763–812.
Richard, J.-F., Zhang, W., 1996. Econometric modelling of UK house prices using accelerated importance

sampling. Oxf. Bull. Econ. Stat. 58, 601–613.
Sampson, M., 1991. The effect of parameter uncertainty on forecast variances and confidence intervals

for unit root and trend stationary time-series models. J. Appl. Econometr. 6, 67–76.
Singer, M., 1997. Thoughts of a nonmillenarian. Bull. Am. Acad. Arts Sci. 51, 36–51.
Stock, J.H., Watson, M.W., 1989. New indexes of coincident and leading economic indicators. NBER

Macro-Economic Annual, 351–409.
Stock, J.H., Watson, M.W., 1993. A procedure for predicting recessions with leading indicators:

econometric issues and recent experience. In: Stock, J.H., Watson, M.W.(Eds.), Business Cycles,
Indicators and Forecasting. University of Chicago Press, Chicago, pp. 95–156.

Stock, J.H., Watson, M.W., 1996. Evidence on structural instability in macroeconomic time series
relations. J. Bus. Econ. Stat. 14, 11–30.

Stock, J.H., Watson, M.W., 1999. A comparison of linear and nonlinear univariate models for forecasting
macroeconomic time series. In: Engle, R.F., White, H.(Eds.), Coinlegration, Causality and Forecast-
ing: A Festschrift in Honour of Clive Granger. Oxford University Press, Oxford.

Swanson, N.R., White, H., 1997. Forecasting economic time series using flexible versus fixed
specification and linear versus nonlinear econometric models. Int. J. Forecast. 13, 439–462.

Tay, A.S., Wallis, K.F., 2000. Density forecasting: a survey. J. Forecast. 19, 235–254. Reprinted in:
Clements and Hendry, 2002a, pp. 45–68.

Theil, H., 1966. Applied Economic Forecasting. North-Holland, Amsterdam.
Turner, D.S., 1990. The role of judgement in macroeconomic forecasting. J. Forecast. 9, 315–345.
Wallis, K.F., 1986. Forecasting with an econometric model; The ‘ragged edge’ problem. J. Forecast. 5,

1–14.
Wallis, I.C.F., 1989. Macroeconomic forecasting: a survey. Econ. J. 99, 28–61.
Wallis, K.F., Whitley, J.D., 1991. Sources of error in forecasts and expectations: UK economic models,

1984–1988. J. Forecast. 10, 231–253.


	Economic forecasting: some lessons from recent research
	Introduction
	Background
	The failure of `optimality theory'

	A more viable framework
	A forecast-error taxonomy

	`Principles' based on empirical forecast performance
	Ten areas of understanding
	Accounting for forecast failure
	The role of causal models in forecasting
	Intercept corrections
	Unit roots and cointegration
	Model selection or `data mining'
	Deterministic shifts vs. other breaks
	Explaining the results of forecasting competitions
	Simplicity in forecasting
	Evaluating forecasts
	Difference-stationary vs. trend-stationary models

	Implications for model selection
	The role of forecasts in econometric model selection
	Implications of the forecast-error taxonomy
	The role of forecasts in selecting policy models
	Impulse-response analyses

	Ten areas in need of improved understanding
	Pre-testing for intercept corrections
	Modelling shifts
	Forecast smoothing
	Role of surveys in forecasting
	Pooling of forecasts
	Measurement errors vs. innovation shifts
	Multi-step estimation
	Co-breaking in forecasting
	Forecasting rare events
	Leading indicators

	Conclusions
	References


